登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>改进遗传模拟退火算法在电站机组协调控制系统辨识中的应用

改进遗传模拟退火算法在电站机组协调控制系统辨识中的应用

218    2020-08-19

¥0.50

全文售价

作者:张永涛, 曹喜果

作者单位:新疆工程学院能源工程学院,新疆 乌鲁木齐 830023


关键词:改进遗传模拟退火;超临界机组;协调控制;模型辨识


摘要:

传统的超临界机组协调控制系统模型结构复杂,不利于后续控制算法的设计,而传统的模拟退火算法在寻优规模较大时,寻优精度往往很低,遗传算法在寻优后期,寻优效率较低,也容易出现局部最优的问题。介于此,将遗传算法及模拟退火算法进行结合(SAGA),并在选择、交叉、变异算子、温度衰减函数、终止条件等方面进行改进。通过TSP问题对比测试,验证该算法较强的全局搜索能力及收敛速度。最后基于该改进算法,结合现场数据,辨识获得600 MW机组87%、66%、54% 3个负荷点下的三输入三输出模型,并通过与现场数据对比验证模型的准确性。此外,该模型形式规范,应用性强,可为协调控制系统控制设计提供参考。


Application of improved genetic simulated annealing algorithm in the identification of plant unit coordination control system
ZHANG Yongtao, CAO Xiguo
College of Energy Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
Abstract: The traditional structure of supercritical unit coordinated control system is complex, which is not conducive to the design of subsequent control algorithm. However, the precision of traditional simulated annealing algorithm is very low, when the search scale is large, genetic algorithm is prone to the problem of local optimization in the later stage of optimization. By this in selection, crossover, mutation operator, temperature attenuation function, termination condition aspect, the paper improves the method that will combine the genetic algorithm with simulated annealing algorithm. Through the contrast test of TSP problem, the strong global search ability and convergence speed of the algorithm are verified. Finally, based on operational data, the three input three output model of 600 MW unit at 87%, 66% and 54% load points is identified by the improved algorithm, and the accuracy of the model is verified by comparing with the field data. In addition, the model is formal and applicable, which can provide reference for control design of coordinated system.
Keywords: improved genetic simulated annealing;supercritical unit;coordination control;model identification
2020, 46(8):131-136  收稿日期: 2020-04-19;收到修改稿日期: 2020-05-06
基金项目: 新疆自治区高校科研计划自然科学青年研究项目(XJEDU2018Y054)
作者简介: 张永涛(1987-),玛雅游戏下载:男,河南漯河市人,讲师,硕士,研究方向为热工过程控制与优化、电站机组建模及仿真等
参考文献
[1] NUQUI R F, PHADKE A G. Phasor measurement unit placement techniques for complete and incomplete observability[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2381-2388
[2] ZHAO H S, LI Y, MI Z Q, et al. Sensitivity constrained PMU placement for complete observability of power systems[C]//Proceedings of IEEE Conference on Transmission and Distribution: Asia and Pacific. Dalian: IEEE, 2005: 1-5.
[3] 李元香, 蒋文超, 项正龙,等. 基于弛豫模型的模拟退火算法温度设置方法[J]. 计算机学报, 2019, 42: 1-18
[4] AMINIFAR F, LUCAS C, KHODAEI A, et al. Optimal placement of phasor measurement units using immunity genetic algorithm[J]. IEEE Transacti- ons on Power Delivery, 2009, 24(3): 1014-1020
[5] 霍晴晴, 郭健全. 基于改进遗传算法的生鲜多目标闭环物流网络模型[J]. 计算机应用, 2019, 40(5): 1-9
[6] 李千军, 刘光耀, 赵全斌,等. 遗传算法在火电机组冷端系统优化中的应用[J]. 热力发电, 2014, 43(1): 21-30
[7] 袁澎, 艾芊, 赵媛媛. 基于改进的遗传–模拟退火算法和误差度分析原理的PMU多目标优化配置[J]. 中国电机工程学报, 2014, 34(13): 2178-2187
[8] 汪臻. 基于遗传模拟退火算法的高速列车运行调整问题研究[D]. 北京:北京交通大学, 2019.
[9] 崔雪源. 基于遗传模拟退火算法的航班着陆调度问题[D]. 武汉:华中师范大学, 2015.
[10] 刘锦. 混合遗传算法和模拟退火算法在TSP中的应用研究[D]. 广州:南理工大学, 2018.
[11] LIU Y, KANG L S, CHEN Y M. Non numeric parallel algorithm[M]. Beijing: Science press, 1995.
[12] XIA D W, ZHANG C H. Optimal control of circulation pumps in power plant and its solution based on genetic algorithm[J]. Journal of Shandong University: Engineering Science, 2005, 35(2): 50-55
[13] 袁丽华. 基于物种进化的遗传算法研究[D]. 南京:南京航空航天大学, 2009.
[14] 郭彩杏, 郭晓金, 柏林江. 改进遗传模拟退火算法优化BP算法研究[J]. 小型微型计算机系统, 2019, 40(10): 2063-2067
[15] 杨启文. 计算智能及其工程应用[D]. 杭州:浙江大学, 2001.
[16] 杜鹏桢, 唐振民, 孙研. 一种面向对象的多角色蚁群算法及TSP问题求解[J]. 控制与决策, 2014, 29(10): 1729-1736

百万发真人洗码 申慱代理开户最高返点 王子娱乐网神通 申博太阳城开户导航 博狗麻将开户
皇浦赌场认证 澳门皇浦官网 SUN菲律宾申博美女荷官 澳门云顶怎么样 菲律宾申博下载客户端
澳门凯时国际赌城 奔驰电子棋牌捕鱼 太阳城suncity618 申博太阳城大客户服务 云鼎国际代理最高占成
彩虹天堂 金顺游戏对战 申博在线娱乐网 赌神扎金花游戏在线玩 单机斗地主免费下载